SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 617683 **QUESTION BANK (DESCRIPTIVE)**

Subject with Code Fiber Optic Communications (19EC0440)

Year &Sem: IV-B.Tech & I-Sem

Course & Branch: B.Tech & ECE

Regulation: R19

UNIT –I INTRODUCTION

1.	Explain the Elements of Optical Communication System with neat sketch.	[L2] [CO1]	[12M]
2.	a) List the applications of optical fiber communication.	[L1] [CO1]	[6M]
	b) Derive the expression for i) Acceptance angle ii) Snell's law	[L3] [CO1]	[6M]
2	a) Derive the expression for i) Critical angle. ii) Numerical aperture.	[L3] [CO1]	[6M]
3.	b) Explain the ray theory transmission with neat sketch.	[L2] [CO1]	[6M]
	a) Describe the characteristics of multimode Graded Index fiber with neat sketch.	[L2] [CO1]	[6M]
4.	b) A light ray is incident from medium-1 to medium-2. If the refractive indices of medium-1 and medium-2 are 1.6 and 1.36 respectively, then evaluate the angle of refraction for an incident angle of 30^{0} .	[L4] [CO1]	[6M]
5.	a) Consider multimode fiber that has a core refractive index of 1.488 and core cladding index difference of 2.0%. Calculate numerical aperture, critical angle and acceptance angle.	[L4] [CO1]	[6M]
	b) List out the merits and demerits of optical fiber communication.	[L1] [CO1]	[6M]
6.	Describe in detail about (i) Single mode and (ii) Multimode fibers.	[L2] [CO1]	[12M]
_	a) Illustrate the impact of group delays in optical communication.	[L2] [CO2]	[6M]
7.	b) What is attenuation? Explain in detail.	[L2] [CO2]	[6M]
	a) How the attenuation is caused by absorption losses?	[L1] [CO2]	[6M]
8.	b) Explain the phenomenon of Rayleigh scattering.	[L2] [CO2]	[6M]
9.	a) What is Dispersion? List the various types of dispersion.	[L2] [CO2]	[6M]
ש.	b) Explain in brief about inter modal dispersion.	[L3] [CO2]	[6M]
10.	a) Deduce the expressions for fiber Core and Cladding losses.	[L4] [CO2]	[6M]
	b) Explain various types of fiber bending losses.	[L3] [CO1]	[6M]

UNIT –II
FIBER OPTICAL SOURCES AND COUPLING

	a) Explain in brief about direct and indirect band gap materials in detail.	[L2] [CO3]	[6M]
1	b) Explain LED Structure with neat sketch.	[L2] [CO3]	[6M]
1	b) Explain EED Structure with new sketch.	[22][005]	
	a) Illustrate on light source materials in detail.	[L2] [CO3]	[6M]
	b) A planar LED is fabricated from GaAs which has a refractive index of		
	3.6.(i) Calculate the optical power emitted into air as a percentage of the		
2	internal optical power for the device when the transmission factor at the	[L3] [CO3]	[6M]
	crystal-air interface is 0.68.(ii) When the optical power generated internally		
	is 60% of the electric power supplied, determine the external power		
	efficiency.		
	a) Explain about the surface emitter LED with neat diagram.	[L2] [CO3]	[6M]
3	b) Describe about the modulation of LED in detail	[L2] [CO3]	[6M]
	a) Illustrate the working principle of an edge emitter LED with neat diagram.	[L2] [CO3]	[6M]
4	b) List the advantages and disadvantages of LED.	[L1] [CO3]	[6M]
	a) Deduce the expressions of quantum efficiency and LED power.	[L4] [CO3]	[6M]
6	b) Illustrate about Injection Laser Diode with suitable diagram.	[L2] [CO3]	[6M]
	a) Explain about resonant frequencies of LASER Diode	[L2] [CO3]	[6M]
6	b) Calculate the GaAs optical source with a refractive index of 3.6 is coupled		
	to a silica fiber that has a refractive index is 1.48. If the fiber and the source	[L4] [CO3]	[6M]
	are in close physical contact then find the Fresnel reflection at the interface	[L4][C03]	
	and power loss in dB.		
	a) Derive the expressions for LASER modes and threshold conditions.	[L3] [CO3]	[6M]
7	b) What power is radiated by an LED if its quantum efficiency is 3% and the	[L1] [CO3]	[6M]
	peak wavelength is 670nm?		
	a) Illustrate about external quantum efficiency of LASER.	[L2] [CO3]	[6M]
8	b) Compute the rate equation for LASER diode.	[L3] [CO3]	[6M]
	a) Explain in detail the various Characteristics of Light Source	[L2] [CO3]	[6M]
9	b) Describe about Temperature effects of Laser characteristics.	[L1] [CO3]	[6M]
	a) Illustrate the working principle of Distributed feedback LASER diode	[L2] [CO3]	[6M]
10	b) The Radiative and non-radiative recombination life times of minority	[L4] [CO3]	[6M]
	carriers in the active region of a double heterojunction LED are 60 nsec and		
	90 nsec respectively. Evaluate the total carrier recombination life time and		
	optical power generated internally if the peak emission wavelength is 870 nm		
	and drift current is 40 mA.		

UNIT –III FIBER OPTICAL RECEIVERS

	a) Explain the principle behind the operation of an PIN photo diode.	[L2] [CO3]	[6M]
1	b) A photo diode has a quantum efficiency of 66% when photons of energy of		[6M]
	1.6 x 10-19 J are incident upon it. (i) Find the operating wavelength of the	[L4] [CO3]	
	photodiode (ii) Calculate the incident optical power required to obtain a photo		
	current of 2.6nA when the photodiode is operating as described above.		
	a) Explain in detail the operation of Avalanche Photo Diode using suitable	[L2] [CO3]	[6M]
	diagram.		
2	b) In GaAs Photodetector a pulse of 86ns emits 6*10 ⁶ photons at 1300 nm	[L3] [CO3]	
	wavelength. Average e-h pair generated are 6.4*10 ⁶ . Calculate the quantum		[6M]
	efficiency of the detector.		
3	a) Explain about avalanche multiplication noise in APD diode.	[L2] [CO3]	[6M]
3	b) Summarize the comparisons of photo detectors.	[L2] [CO3]	[6M]
4	a) Explain the characteristics of fundamental optical receiver operation.	[L2] [CO3]	[6M]
4	b) Explain the energy band diagram for a PIN photodiode with neat diagram.	[L2] [CO3]	[6M]
	a) Illustrate how noises are entered into photo detector.	[L2] [CO3]	[6M]
6	b) Analyze photo detector receiver with simple model and equivalent circuit.	[L4] [CO3]	[6M]
	a) Deduce the equation for S/N ratio of an optical fiber.	[L4] [CO3]	[6M]
6	b) Compute the Bandwidth of a photo detector having the parameters as follows:	[L3] [CO3]	[6M]
	Photo diode capacitance 3pf, amplifier capacitance 4 pf, load resistance 60 Ω		
	and amplifier input resistance is $1M\Omega$.		
7	a) Compute the expression for response time of a photodiode.	[L3] [CO3]	[6M]
/	b) Explain the working of depletion layer photo diode with diagram.	[L2] [CO3]	[6M]
8	a) Explain the digital signal transmission for an optical receiver.	[L2] [CO3]	[6M]
0	b) Construct the optical receiver configuration.	[L3] [CO3]	[6M]
9	a) What is a preamplifier? Classify them	[L4] [CO3]	[6M]
	b) A given silicon avalanche photodiode has a quantum efficiency of 66% at a		
	wavelength of 900nm.Suppose 0.6µW of optical power produces a multiplied	[L3] [CO3]	[6M]
	photocurrent of 10µA. Calculate the multiplication M.		
	a) Explain the mechanism of error sources and disturbance in the optical pulse	[L2] [CO3]	[6M]
10	detection with diagram.		
	b) Explain in detail about any one type of Preamplifier in detail.	[L2] [CO3]	[6M]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
b) List the applications of Optical amplifier[L2] [CO4][6M]a) Explain Optical Fiber System Design Specification.[L2] [CO4][6M]b) Explain the Rise Time Budget analysis with basic elements.[L2] [CO4][6M]a) What is bandwidth budget?[L1] [CO4][6M]b) Describe about power budget with examples[L2] [CO4][6M]a) Describe about power budget with examples[L2] [CO4][6M]b) Describe about power budget and provide the examples[L2] [CO4][6M]a) Describe about link budget calculations[L2] [CO4][6M]b) Describe about power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw. evaluate performance parameters.[L4] [CO4][6M]a) Summarize on system performance using rise time budget of digital systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]c) a) Illustrate in detail about Link power budget.[L2] [CO4][6M]fb) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]fa) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]ga) Explain about bandwidth budget.[L2] [CO5][6M]gb) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 m spectral band?[L3] [CO5][6M]gb) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total sys	1	a) List the types of budget in optical communication system.	[L1] [CO4]	[6M]
2b) Explain the Rise Time Budget analysis with basic elements.[L2] [CO4][6M]3a) What is bandwidth budget?[L1] [CO4][6M]4b) Describe about power budget with examples[L2] [CO4][6M]4a) Describe about link budget calculations[L2] [CO4][6M]4b) 2*2 biconical fiber coupler has an optical input power level of P0=400µw, the output power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw.[L4] [CO4][6M]6b) 2*2 biconical fiber coupler has an optical input power level of digital systems.[L2] [CO4][6M]6b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]6b) Analyze the system performance using link power budget of digital systems.[L2] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO4][6M]7a) Explain in detail about Optical amplifier with an example. b) Explain about bandwidth budget.[L2] [CO4][6M]8b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]		b) List the applications of Optical amplifier	[L2] [CO4]	[6M]
b) Explain the Rise Time Budget analysis with basic elements.[L2] [CO4][6M]a) What is bandwidth budget?[L1] [CO4][6M]b) Describe about power budget with examples[L2] [CO4][6M]a) Describe about link budget calculations[L2] [CO4][6M]b) 2*2 biconical fiber coupler has an optical input power level of P0=400µw, the output power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw. evaluate performance parameters.[L4] [CO4][6M]a) Summarize on system performance using rise time budget of digital systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L2] [CO4][6M]ca) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO4][6M]fa) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO5][6M]b) Explain about bandwidth budget.[L2] [CO5][6M]b) Explain about bandwidth budget.[L2] [CO5][6M]a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]gb) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and	2	a) Explain Optical Fiber System Design Specification.	[L2] [CO4]	[6M]
3b) Describe about power budget with examples[L2] [C04][6M]4a) Describe about link budget calculations[L2] [C04][6M]4b) 2*2 biconical fiber coupler has an optical input power level of P0=400µw, the output power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw. evaluate performance parameters.[L4] [C04][6M]6a) Summarize on system performance using rise time budget of digital systems.[L2] [C04][6M]6b) Explain the significance of system consideration in point-to-point fiber links.[L2] [C04][6M]6a) Illustrate in detail about Link power budget.[L2] [C04][6M]6b) Analyze the system performance using link power budget of digital systems.[L2] [C04][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [C05][6M]8a) Explain about bandwidth budget.[L2] [C05][6M]8b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 m spectral band?[L2] [C05][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [C05][6M]		b) Explain the Rise Time Budget analysis with basic elements.	[L2] [CO4]	[6M]
b) Describe about power budget with examples[L2] [CO4][6M]a) Describe about link budget calculations[L2] [CO4][6M]b) 2*2 biconical fiber coupler has an optical input power level of P0=400µw, the output power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw. evaluate performance parameters.[L4] [CO4][6M]a) Summarize on system performance using rise time budget of digital systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L2] [CO4][6M]a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]b) Explain about bandwidth budget.[L2] [CO5][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?[L2] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]	2	a) What is bandwidth budget?	[L1] [CO4]	[6M]
4b) 2*2 biconical fiber coupler has an optical input power level of P0=400μw, the output power at the other 3 ports are P1=180μw, P2=170μw, P3=12.6nw. evaluate performance parameters.[L4] [CO4][6M]6a) Summarize on system performance using rise time budget of digital systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]6a) Illustrate in detail about Link power budget.[L2] [CO4][6M]6b) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]7b) Explain in detail about Optical amplifier with an example.[L2] [CO4][6M]8b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?[6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]	3	b) Describe about power budget with examples	[L2] [CO4]	[6M]
4the output power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw. evaluate performance parameters.[L4] [CO4][6M]6a) Summarize on system performance using rise time budget of digital systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L2] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]7b) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]8b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]		. a) Describe about link budget calculations	[L2] [CO4]	[6M]
the output power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw.[[L4] [CO4][6M]evaluate performance parameters.a) Summarize on system performance using rise time budget of digital systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L2] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]8a) Explain about bandwidth budget.[L2] [CO4][6M]8b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]	4	b) 2*2 biconical fiber coupler has an optical input power level of P0=400µw,		
a) Summarize on system performance using rise time budget of digital systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]8a) Explain about bandwidth budget.[L2] [CO4][6M]9b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?[L3] [CO5][6M]9a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]	4	the output power at the other 3 ports are P1=180µw, P2=170µw, P3=12.6nw.	[L4] [CO4]	[6M]
6systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]7a) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?[L2] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]		evaluate performance parameters.		
6systems.[L2] [CO4][6M]b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]7a) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?[L2] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]		a) Summarize on system performance using rise time budget of digital		
b) Explain the significance of system consideration in point-to-point fiber links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]b) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]			[L2] [CO4]	[6M]
links.[L2] [CO4][6M]a) Illustrate in detail about Link power budget.[L2] [CO4][6M]b) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]b) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, tmat is 21ns, trx is 14ns and tmod is 3.9ns. Find total system rise time.[L3] [CO5][6M]	6	b) Explain the significance of system consideration in point-to-point fiber		
6b) Analyze the system performance using link power budget of digital systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]b) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, tmat is 21ns, trx is 14ns and tmod is 3.9ns. Find total system rise time.[L3] [CO5][6M]		links.	[L2] [CO4]	[6M]
systems.[L4] [CO4][6M]7a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]b) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]		a) Illustrate in detail about Link power budget.	[L2] [CO4]	[6M]
Systems.[10M]a) Explain the optical multiplexing and de-multiplexing techniques[L2] [CO5][6M]b) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]	6	b) Analyze the system performance using link power budget of digital		
7 b) Explain in detail about Optical amplifier with an example. [L2] [CO5] [6M] a) Explain about bandwidth budget. [L2] [CO4] [6M] b) An optical transmission system is constrained to have 600 GHZ channel [L2] [CO5] [6M] b) An optical transmission system is constrained to have 600 GHZ channel [L2] [CO5] [6M] gacing. How many wavelength channels can be utilized in the 1636 to 1666 [L2] [CO5] [6M] m spectral band? a) Sketch the optical multiplexing and explain each block. [L3] [CO5] [6M] 9 b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time. [L3] [CO5] [6M]		systems.	[L4] [C04]	[6M]
b) Explain in detail about Optical amplifier with an example.[L2] [CO5][6M]a) Explain about bandwidth budget.[L2] [CO4][6M]b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666[L2] [CO5][6M]9a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]	7	a) Explain the optical multiplexing and de-multiplexing techniques	[L2] [CO5]	[6M]
8 b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 [L2] [CO5] [6M] 9 a) Sketch the optical multiplexing and explain each block. [L3] [CO5] [6M] 9 b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time. [L3] [CO5] [6M]	/	b) Explain in detail about Optical amplifier with an example.	[L2] [CO5]	[6M]
8 spacing. How many wavelength channels can be utilized in the 1636 to 1666 [L2] [CO5] [6M] 9 a) Sketch the optical multiplexing and explain each block. [L3] [CO5] [6M] 9 b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time. [L3] [CO5] [6M]		a) Explain about bandwidth budget.	[L2] [CO4]	[6M]
spacing. How many wavelength channels can be utilized in the 1636 to 1666 [L2] [CO5] [6M] nm spectral band? a) Sketch the optical multiplexing and explain each block. [L3] [CO5] [6M] 9 b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns and t _{mod} is 3.9ns. Find total system rise time. [L3] [CO5] [6M]	0	b) An optical transmission system is constrained to have 600 GHZ channel		
a) Sketch the optical multiplexing and explain each block.[L3] [CO5][6M]9b) LED spectral width of 40nm has rise time of 16ns, t_{mat} is 21ns, t_{rx} is 14ns and t_{mod} is 3.9ns. Find total system rise time.[L3] [CO5][6M]	0	spacing. How many wavelength channels can be utilized in the 1636 to 1666	[L2] [CO5]	[6M]
9b) LED spectral width of 40nm has rise time of 16ns, tmat is 21ns, trx is 14ns and tmod is 3.9ns. Find total system rise time.[L3] [CO5][6M]		nm spectral band?		
and t _{mod} is 3.9ns. Find total system rise time.			[L3] [CO5]	[6M]
	9	b) LED spectral width of 40nm has rise time of 16ns, t _{mat} is 21ns, t _{rx} is 14ns	[1 3] [CO5]	
10Explain in detail about Receiver Sensitivity[L2][CO5][12M]		and t _{mod} is 3.9ns. Find total system rise time.		[6M]
	10	Explain in detail about Receiver Sensitivity	[L2][CO5]	[12M]

UNIT –IV OPTICAL FIBER SYSTEM DESIGN & TECHNLOGY

UNIT –V OPTICAL NETWORKS

1	a) What is optical Network? Explain the elements of optical network	[L2] [CO5]	[6M]
	b) List the advantages of optical networks.	[L1] [CO5]	[6M]
2	Explain in detail about Optical network topologies	[L2] [CO5]	[12M]
3	a) Illustrate about basic optical networks	[L2] [CO5]	[6M]
3	b) What are the advantages of WDM Networks?	[L1] [CO5]	[6M]
4	a) Discuss about broadcast and select single hop network	[L2] [CO5]	[6M]
4	b) Discuss about broadcast and select multi hop network	[L2] [CO5]	[6M]
6	Explain in detail about wave length routed networks.	[L2] [CO5]	[12M]
6	a) List the advantages of EDFA.	[L1] [CO6]	[4M]
0	b) Explain the Performance of WDM+EDFA systems in optical networks	[L2] [CO6]	[6M]
7	a) Discuss the basic concept of optical CDMA	[L2] [CO6]	[6M]
/	b) What are the advantages of optical CDMA?	[L1] [CO6]	[6M]
8	Illustrate about ultra-high capacity networks in detail	[L2] [CO6]	[10M]
9	a) Explain in brief about the working principle of WDM	[L2] [CO6]	[6M]
9	b) What are the characteristics of WDM?	[L1] [CO6]	[6M]
10	a) Why we need optical networks? Explain its significance.	[L4] [CO6]	[6M]
	b) Describe about the optical CDMA network using coded sequence pulse	[L2] [CO6]	[6M]

Prepared by: K. Bhasakr, J. Durga Bhavani.